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ABSTRACT 

Fractional calculus has attracted significant attention as a powerful tool for modeling physical and 

engineering systems with memory and hereditary effects. Fractional-order derivatives offer more realistic 

descriptions of phenomena such as anomalous diffusion, viscoelastic behavior, and wave propagation. 

Recent advances in analytical and numerical techniques have enabled effective treatment of fractional 

partial differential equations (FPDEs). In this chapter, three semi-analytical methods—Adomian 

Decomposition Method (ADM), Variational Iteration Method (VIM), and New Iterative Method (NIM)—are 

applied to obtain approximate analytical solutions of three-dimensional time-fractional diffusion, telegraph, 

and wave equations. These methods avoid discretization and linearization, produce rapidly convergent 

series solutions, and are validated through illustrative examples, demonstrating their accuracy and 

applicability to multidimensional time-fractional models. 

Keywords: Fractional calculus, Time-fractional partial differential equations, Adomian Decomposition Method 

(ADM), Variational Iteration Method (VIM), New Iterative Method (NIM), Diffusion equation, Telegraph equation, 

Wave equation, Semi-analytical methods. 

 

1. Introduction 

Fractional calculus has become an important mathematical framework for modeling complex 

phenomena in science, engineering, and applied mathematics. Unlike traditional integer-order models, 

fractional-order derivatives effectively capture memory and hereditary effects that are commonly observed 

in many physical systems. Processes such as anomalous diffusion, viscoelastic materials, fluid flow in 

porous media, and traffic dynamics depend not only on their current state but also on their past behavior. 

Fractional calculus naturally incorporates these effects, providing more accurate and realistic representations 

of such systems. Moreover, fractional-order models serve as a bridge between classical integer-order 

equations and more general dynamical behaviors. 
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In the past, fractional differential equations—particularly fractional partial differential equations—were 

difficult to analyze due to the lack of systematic solution techniques. However, recent advances in analytical 

and numerical methods have led to the development of efficient schemes for solving various classes of 

fractional PDEs, including time-fractional diffusion, telegraph, and wave equations. As a result, interest in 

fractional modeling has increased significantly. 

In this paper, three semi-analytical series-based methods, namely the Adomian Decomposition Method 

(ADM), the Variational Iteration Method (VIM), and the New Iterative Method (NIM), are employed to 

obtain approximate analytical solutions of three-dimensional time-fractional diffusion, telegraph, and wave 

equations. These methods avoid discretization, linearization, and complex transformations, and instead 

generate rapidly convergent series solutions. The effectiveness and accuracy of the proposed approaches are 

demonstrated through illustrative examples, highlighting their usefulness in modeling physical processes in 

fluid mechanics and related applications. 

2. Numerical Evaluation of the Methods 

In this section, the three selected linear fractional partial differential equations are solved using the 

Adomian Decomposition Method (ADM) [2], the Variational Iteration Method (VIM) [4], and the New 

Iterative Method (NIM) [5]. These semi-analytical techniques are applied to the illustrative examples to 

assess their computational efficiency, accuracy, and convergence behavior. The results obtained from each 

method provide a clear comparison of their performance and demonstrate their effectiveness in handling 

fractional-order models in higher dimensions. 

Example 2.1. Let us examine the following three-dimensional linear time-fractional diffusion equation 

(TFDE) 

              
2

,
u u u u

t r s z

  

   

   
= + +

   
                     0, , , ,0 1.t r s z R      

                                                                                                                               (2.1.1) 

Accompanied by the given initial condition 

 

                           ( ) ( ) ( ) ( ), , ,0 sin cos cos .u r s z r s z=                                             (2.1.2) 

 

Following the Adomian Decomposition Method [2]  

    
( ) ( ) ( ) ( ) ( )

r ,s ,zk 1 0 k 1 1 ku r,s, z, t J (b r,s, z u r,s, z, t b r,s, z L u r,s, z, t ...

+ = − + +                                    

( ) ( )
r ,s ,zn n kb r,s, z L u r,s, z, t )+ .                                                                              (2.1.3) 

Using equation (2.1.3) as our starting point, the recurrence relation follows naturally.                                                                                                                     

   

( ) ( ) ( ) ( )0 , , , sin cos cos ,u r s z t r s z=                                                                      (2.1.4) 

( ) ( ) ( ) ( )1

3
, , , sin cos cos ,

1

t
u r s z t r s z




=

+
                                                            (2.1.5) 
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( ) ( ) ( ) ( )2

9
, , , sin cos cos ,

2 1

t
u r s z t r s z




=

+
                                                         (2.1.6)    

( ) ( )
2 2 2

1 2 2 2
, , , , , ,i i t i i i iu r s z t u r s z t J u u u u

t r s z




+

    
= + − − − 

    
             

                                                                                                                              (2.17) 

We can represent the expression in series form as 

( ) ( ) ( ) ( )
3 9 27

, , , 1 .... sin cos cos .
1 2 1 3 1

t t t
u r s z t r s z

  

  

 
= + + + + 

+ + + 
           

                                                                                                                             (2.1.8)    

Using the Variational Iteration Method (VIM) [4], the associated iterative formula can be written in the following 

form:      

( ) ( )
2 2 2

1 2 2 2
, , , , , ,i i t i i i iu r s z t u r s z t J u u u u

t r s z




+

    
= + − − − 

    
                     (2.1.9) 

 Using equation (2.1.9), we can now formulate the corresponding recurrence relation. 

( ) ( ) ( ) ( )0 , , , sin cos cos ,u r s z t r s z=                                                                  (2.1.10) 

( ) ( ) ( ) ( )1

3
, , , 1 sin cos cos ,

1

t
u r s z t r s z





 
= + 

+ 
                                               (2.1.11) 

( ) ( ) ( ) ( )
2

2

3 9
, , , 1 sin cos cos ,

1 2 1

t t
u r s z t r s z

 

 

 
= + + 

+ + 
                               (2.1.12)  

( ) ( ) ( )
1

0

, , , , ,
!

il

i t t

i

t
u r s z t p r s z I D J D f N u

i

 
−

=

= + + = +                                    (2.1.13) 

Based on the NIM [5], the corresponding formula is written as 

          ( ) ( ) ( )
1

0

, , , , ,
!

il

i t t

i

t
u r s z t p r s z I D J C f N u

i

 
−

=

= + + = +  

where 

 ( )
i1

i t

i 0

t
ƒ p r,s, z J D

i

−


=

= +


 and  t 0, r,s, z R,0 1,     ,   (2.1.14) 

and                        u0 = ƒ,    un + 1 = N(un) ,                    n = 0, 1, 2, ... 

where 

                                             ( ) ( ) ( ) ( )0 , , , sin cos cos .u r s z t r s z=       

Defining, 𝑁(𝑢) = −𝐽𝑡
𝛼[𝑢𝑟

2 + 𝑢𝑠
2 + 𝑢𝑧

2]
 
the initial terms of the new iterative solution can be derived as 

follows. 

( ) ( ) ( ) ( )0 , , , sin cos cos ,u r s z t r s z=                                                                (2.1.15) 

( ) ( ) ( ) ( )1

3
, , , sin cos cos ,

1

t
u r s z t r s z




=

+
                                                       (2.1.16) 
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( ) ( ) ( ) ( )2

9
, , , sin cos cos ,

2 1

t
u r s z t r s z




=

+
                                                     (2.1.17)   

  

( ) ( ) ( ) ( )3

27
, , , sin cos cos ,

3 1

t
u r s z t r s z




=

+
                                                     (2.1.18) 

We can express it through the series expansion 

( ) ( ) ( ) ( )
3 9 27

, , , 1 .... sin cos cos .
1 2 1 3 1

t t t
u r s z t r s z

  

  

 
= + + + + 

+ + + 
           (2.1.19) 

Table 2.1 

 t p α = 0.5 𝛼 = .24 𝛼 = .74 𝛼 = 1 Exact Error 

0.2 1 5.158668 13.918793 2.410887 1.528110 0.673178 0.854932 

 2 5.574480 15.040714 2.605217 1.651286 0.727438 0.923847 

 3 0.865142 2.3342699 0.404322 0.256274 0.112894 0.14338 

 4 -4.63961 -12.51830 -2.16831 -1.37436 -0.605443 -0.768917 

 5 -5.87870 -15.86160 -2.74741 -1.74141 -0.767140 -0.97427 

0.3 1 7.481961 17.603941 3.484620 2.041830 0.58904 1.45279 

 2 8.085040 19.022900 3.765497 2.206411 0.636507 1.569904 

 3 1.254773 2.9522922 0.584393 0.342428 0.098785 0.243643 

 4 -6.72913 -15.83264 -3.13400 -3.13400 -0.529764 -2.604236 

 5 -8.52630 -20.06112 -3.97101 -2.32683 -0.671248 -1.655582 

0.4 1 9.996025 20.894782 4.798268 2.699439 0.504884 2.194555 

 2 10.80175 22.578998 5.185030 2.917025 0.545579 2.371446 

 3 1.676397 3.5041871 0.804700 0.452711 0.084673 0.368038 

 4 -8.99023 -18.79236 -4.31547 -2.42781 -0.454082 -1.973728 

 5 -11.3913 -27.26440 -7.25053 -3.07623 -0.575356 2.500874 

 

Table 2.1 presents the results of the Time-Fractional Telegraph Equation (TFTE) obtained from equation (2.1.19) for α=0.5, 0.24, 

0.74 and α=1, along with the absolute error evaluated at α=1. 

Example 2.2. The next illustration involves a 3-D linear TFTE. 

2 2 2 2

2 2 2 2

u u u u u
2 u ,

t t r s z

 

 

    
+ + = + +

    
                                                            (2.2.20) 

                                                                        t 0, r,s, z R,0 1.      

  under the given initial conditions 

( ) ( ) ( ) ( ), , ,0 sinh sinh sinh ,u r s z r s z=                                                          (2.2.21) 

( ) ( ) ( ) ( ), , ,0 sinh sinh sinh .tu r s z r s z= −                                                      (2.2.22) 

Referring to the ADM [2], the early components of the problem are constructed as follows: 
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( ) ( ) ( ) ( ) ( )
r ,s ,zk 1 0 k 1 1 ku r,s, z, t J (b r,s, z u r,s, z, t b r,s, z L u r,s, z, t ...

+ = − + +    

                              ( ) ( )
r ,s ,zn n kb r,s, z L u r,s, z, t )+ .                                                 (2.2.23)                                                        

From equation (2.2.23), we derive the corresponding recurrence relation 

( ) ( ) ( ) ( )0

4
, , , 1 sinh sinh sinh ,

1

t
u r s z t t r s z





 
= − − 

+ 
                                        (2.2.24)                                      

( ) ( ) ( ) ( )
1 2

1

4 4 16
, , , sinh sinh sinh ,

1 2 2 1

t t t
u r s z t r s z

  
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+ 
= − + + 

+ + + 
                   (2.2.25) 

( ) ( ) ( ) ( )
2 2 1 3

2

16 16 64
, , , sinh sinh sinh ,

2 1 2 2 3 1

t t t
u r s z t r s z

  

  

+ 
= − − 

+ + + 
                 (2.2.26)                                                            

The corresponding series expansion is 

( ) ( ) ( ) ( )
1 2 2 1 38 4 32 16 64

, , , 1 .... sin cos cos .
1 2 2 1 2 2 3 1

t t t t t
u r s z t t r s z

    
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+ + 
= − − + + − − + 

+ + + + + 
        (2.2.27) 

  Referring to the VIM [4], the problem can be approached using the following iterative scheme, 

( ) ( ) ( )
2 2 2 2

i i i i i
i 1 i t i2 2 2 2

u u u u u
u t, r, z, t u t, r, z, t 1 J 2 u .

t t r s z

 


+  

     
= −  − + + − − − 

     
                       (2.2.28) 

Using the initial guess ( ) ( ) ( )0 sinh sinh sinh ,u r s z=  within the iteration scheme, the following 

approximation can be derived. 

( ) ( ) ( ) ( ) ( )1

4
, , , 1 1 sinh sinh sinh ,

1

t
u r s z t r s z






 
= − − 

+                                                             (2.2.29)                    

  
( ) ( ) ( ) ( )

1
2

2

4 4 4
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  

  
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2
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1 )sinh sinh sinh ,
2 1

t
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


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( ) ( ) ( ) ( )

1
2

3

4 4 4
, , , (1 1 1 1

1 1 2

t t t
u r s z t

  

  
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+

= − − − − + − +
+ + +   

                         
( ) ( ) ( )

2 2 2 1
2 2 316 16 16

1 1 1
2 1 2 1 2 2

t t t  

  
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+

+ − + − − −
+ + +    

                           ( ) ( ) ( ) ( )
3

3 64
1 )sinh sinh sinh ,

3 1

t
r s z






− −
+                                                        (2.2.31)                         

( ) ( ) ( ) ( )
1

24 4 4
, , , (1 1 1 1

1 1 2

t t t
u r s z t

  

  
  

+

= − − − − + − +
+ + +   

                         
( ) ( ) ( )

2 2 2 1
2 2 316 16 16

1 1 1
2 1 2 1 2 2

t t t  

  
  

+

+ − + − − −
+ + +   

                                                         

                         ( ) ( ) ( ) ( )
3

3 64
1 )sinh sinh sinh ,

3 1

t
r s z






− −
+                                                             (2.2.32)                              

Referring to the NIM [5], the problem can be approached through the following formula 
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( ) ( ) ( )
1
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−
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where 

 ( )
i1

i t

i 0

t
ƒ p r,s, z J D

i

−


=

= +


 and  t 0, r,s, z R,0 1,     ,     

                   u0 = ƒ,    un + 1 = N(un) ,                    n = 0, 1, 2, ...                                  (2.2.33)                                                                                                                                                                        

Defining, 𝑁(𝑢) = −𝐽𝑡
𝛼[𝑢𝑟

2 + 𝑢𝑠
2 + 𝑢𝑧

2]
 
the initial terms of the new iterative solution can be derived as 

follows. 

( ) ( ) ( ) ( )0

4
, , , 1 sinh sinh sinh ,

1

t
u r s z t t r s z





 
= − − 

+ 
                                                         (2.2.34)                             

( ) ( ) ( ) ( )
1 2

1

4 4 16
, , , sinh sinh sinh ,

1 2 2 1

t t t
u r s z t r s z

  

  

+ 
= − + + 

+ + + 
                                    (2.2.35) 

( ) ( ) ( ) ( )
2 2 1 3

2

16 16 64
, , , sinh sinh sinh ,

2 1 2 2 3 1

t t t
u r s z t r s z

  

  

+ 
= − − 

+ + + 
                                  (2.2.36) 

The corresponding series expansion is 

( ) ( ) ( ) ( )
1 2 2 1 38 4 32 16 64

, , , 1 .... sin cos cos .
1 2 2 1 2 2 3 1

t t t t t
u r s z t t r s z

    

    

+ + 
= − − + + − − + 

+ + + + + 
    (2.2.37)   

As indicated by (2.2.27), (2.2.32), and (2.2.37), the ADM, VIM, and NIM approaches produce identical 

solutions for the three-dimensional linear TFTE (2.2.20). 

Table 2.2 

t p 𝛼 = .5 𝛼 = .24 𝛼 = .74 𝛼 = 1 Exact Error 

0.2 1 -1.403219 -12.204162 -0.304507 -0.219369 -0.23505 0.015681 

 2 -4.330559 -37.664013 -0.939756 -0.677014 -0.72538 0.048366 

 3 -11.96159 -104.03306 -2.595731 -1.870004 -2.00358 0.133576 

 4 -32.58482 -283.39877 -7.071089 -5.094118 -5.45797 0.363852 

0.3 1 -3.267968 -18.187894 -0.564224 -0.517089 -0.35255 -0.164539 

 2 -10.08547 -56.130774 -1741286 -1.595819 -1.08805  -0.507769 

 3 -27.85746 -155.04073 -4.809665 -4.407863 -3.00537 -1.402493 

 4 -75.88709 -422.34991 -13.10212 -12.00755 -8.18697 -3.82058 

0.4 1 -5.884928 -24.126101 -1.022010 -0.673783 -0.47009 -0.203693 

 2 -18.16184 -74.457038 -3.154088 -2.079398 -1.45075 -0.628648 

 3 -50.16543 -205.66033 -8.712012 -5.743582 -4.00716 -1.736422 

 4 -136.6568 -560.24389 -23.73259 -15.64620 -10.917 -4.7292 

Table 2.2 presents the results of the Time-Fractional Telegraph Equation (TFTE) obtained from equation (2.2.37) for 

α=0.5, 0.25, 0.75 and α=1, along with the absolute error evaluated at α=1. 
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Example 2.3. We focus on the three-dimensional linear TFWE given below. 

  
2 2 2

2 2 2

u u u u
,

t r s z





   
= + +

   
  t 0, r,s, z R,0 1.                                  (2.3.38) 

under the given initial conditions 

                          
( ) ( ) ( ) ( ), , ,0 sin sin cot .u r s z r s z=                                      (2.3.39)    

Based on the ADM [2] 

( ) ( ) ( ) ( ) ( )
r ,s ,zk 1 0 k 1 1 ku r,s, z, t J (b r,s, z u r,s, z, t b r,s, z L u r,s, z, t ...

+ = − + +    

                              ( ) ( )
r ,s ,zn n kb r,s, z L u r,s, z, t ).+                                          (2.3.40) 

 Using the information provided in equation (2.3.40), the recurrence relation can be derived. 

( ) ( ) ( ) ( )0

3
, , , 1 sin cos cot ,

1

t
u r s z t r s z





 
= − 

+ 
                                            (2.3.41) 

( ) ( ) ( ) ( )
2

1

3 9
, , , sin cos cot ,

1 2 1

t t
u r s z t r s z

 

 

 
= − + 

+ + 
                               (2.3.42) 

( ) ( ) ( ) ( )
2 3

2

9 27
, , , sin cos cot ,

2 1 3 1

t t
u r s z t r s z

 

 

 
= − 

+ + 
                               (2.3.43) 

( ) ( ) ( ) ( )
3 4

3

27 81
, , , sin cos cot ,

3 1 4 1

t t
u r s z t r s z

 

 

 
= − + 

+ + 
                             (2.3.44)                                           

The corresponding series expansion is 

( ) ( ) ( ) ( )
2 3 36 18 54 81

, , , 1 .... sin cos cot .
1 2 1 3 1 4 1

t t t t
u r s z t r s z

   

   

 
= − + − + + 

+ + + + 
     (2.3.45) 

Referring to the VIM [4], the problem can be approached using the following iterative scheme, 

( ) ( )
2 2 2

i i i i
i 1 i t 2 2 2

u u u u
u t, r, z, t u t, r, z, t J .

t r s z




+ 

    
= − − − − 

    
                                   (2.3.46) 

Considering equation (2.3.46), we now derive the corresponding recurrence relation 

( ) ( ) ( ) ( )0

3
, , , 1 sin cos cot ,

1

t
u r s z t r s z





 
= − 

+ 
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                                                                                                      (2.3.50)   

The expression takes the series form shown below 
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(2.3.51)    

Based on the NIM [5] and applying the corresponding formula, we obtain 
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 and N(𝑢) = 𝐽𝑡
𝛼𝐶  

           and     u0 = ƒ,    un + 1 = N(un) ,                    n = 0, 1, 2, ...                              (2.3.52) 

where 

                                      
( ) ( ) ( ) ( ), , ,0 sin cos cot .u r s z r s z=  
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2 + 𝑢𝑧

2]
 
the initial terms of the new iterative solution can be derived as follows. 
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The expression takes the series form shown below 
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Table 2.3 

t p 𝛼 = .5 𝛼 = .24 𝛼 = .74 𝛼 = 1 Exact Error 

0.2 1 -0.371148 3.605281 -0.168271 0.078594 -0.168289 0.000018 

 2 -0.401059 3.895886 -0.181831 0.084930 -0.181860 0.000029 

 3 -0.062244 0.604629 -0.028220 0.013181 -0.028225 0.000005 

 4 0.3338028 -3.24253 0.1513366 -0.07070 0.15137 -0.0000334 

0.3 1 -0.284460 6.486497 -0.393667 -0.17306 -0.252442 -0.141225 

 2 -0.307390 7.009337 -0.425399 -0.18701 -0.272790  -0.152609 

 3 -0.047706 1.087827 -0.066021 -0.02903 -0.042337 -0.023684 

 4 0.2558376 -5.83383 0.3540561 0.155646 0.227042 0.1270141 

0.4 1 0.1022785 9.617067 -0.580143 -0.37833 -0.336589 -0243554 

 2 0.1105226 10.39225 -0.626905 -0.40883 -0.363720 -0.263186 

 3 0.0171528 1.612843 -0.097294 -0.06345 -0.056449 -0.040845 

 4 -0.091988 -8.64941 0.5217688 0.340259 0.302720 0.2190488 

Table 2.3 presents the Time-Fractional Wave Equation (TFWE) results, computed using the specified equation, for 

α=0.5, α=0.24, α=0.74 and α=1, along with the absolute error evaluated at α=0.74. 
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3. Conclusion 

In this paper, we employed the Adomian Decomposition Method (ADM), the Variational Iteration 

Method (VIM), and a systematic strategy to obtain solutions for three-dimensional, second-order hyperbolic 

linear models, namely the Time-Fractional Diffusion Equation (TFDE), the Time-Fractional Telegraph 

Equation (TFTE), and the Time-Fractional Wave Equation (TFWE). Our approach was implemented 

directly, without introducing any linearization procedures or additional transformation assumptions. The 

results demonstrate that the New Iterative Method (NIM) delivers highly accurate solutions, converges 

rapidly to a stable state, and remains mathematically straightforward to apply even to complex 

multidimensional (more than 2-D) physical problems encountered across various branches of engineering 

and science. 
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