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ABSTRACT

Fractional calculus has attracted significant attention as a powerful tool for modeling physical and
engineering systems with memory and hereditary effects. Fractional-order derivatives offer more realistic
descriptions of phenomena such as anomalous diffusion, viscoelastic behavior, and wave propagation.
Recent advances in analytical and numerical techniques have enabled effective treatment of fractional
partial differential equations (FPDEs). In this chapter, three semi-analytical methods—Adomian
Decomposition Method (ADM), Variational Iteration Method (VIM), and New Iterative Method (NIM)—are
applied to obtain approximate analytical solutions of three-dimensional time-fractional diffusion, telegraph,
and wave equations. These methods avoid discretization and linearization, produce rapidly convergent
series solutions, and are validated through illustrative examples, demonstrating their accuracy and
applicability to multidimensional time-fractional models.

Keywords: Fractional calculus, Time-fractional partial differential equations, Adomian Decomposition Method
(ADM), Variational Iteration Method (VIM), New Iterative Method (NIM), Diffusion equation, Telegraph equation,

Wave equation, Semi-analytical methods.

1. Introduction

Fractional calculus has become an important mathematical framework for modeling complex
phenomena in science, engineering, and applied mathematics. Unlike traditional integer-order models,
fractional-order derivatives effectively capture memory and hereditary effects that are commonly observed
in many physical systems. Processes such as anomalous diffusion, viscoelastic materials, fluid flow in
porous media, and traffic dynamics depend not only on their current state but also on their past behavior.
Fractional calculus naturally incorporates these effects, providing more accurate and realistic representations
of such systems. Moreover, fractional-order models serve as a bridge between classical integer-order

equations and more general dynamical behaviors.
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In the past, fractional differential equations—particularly fractional partial differential equations—were
difficult to analyze due to the lack of systematic solution techniques. However, recent advances in analytical
and numerical methods have led to the development of efficient schemes for solving various classes of
fractional PDEs, including time-fractional diffusion, telegraph, and wave equations. As a result, interest in
fractional modeling has increased significantly.
In this paper, three semi-analytical series-based methods, namely the Adomian Decomposition Method
(ADM), the Variational Iteration Method (VIM), and the New Iterative Method (NIM), are employed to
obtain approximate analytical solutions of three-dimensional time-fractional diffusion, telegraph, and wave
equations. These methods avoid discretization, linearization, and complex transformations, and instead
generate rapidly convergent series solutions. The effectiveness and accuracy of the proposed approaches are
demonstrated through illustrative examples, highlighting their usefulness in modeling physical processes in
fluid mechanics and related applications.
2. Numerical Evaluation of the Methods

In this section, the three selected linear fractional partial differential equations are solved using the
Adomian Decomposition Method (ADM) [2], the Variational Iteration Method (VIM) [4], and the New
Iterative Method (NIM) [5]. These semi-analytical techniques are applied to the illustrative examples to
assess their computational efficiency, accuracy, and convergence behavior. The results obtained from each
method provide a clear comparison of their performance and demonstrate their effectiveness in handling
fractional-order models in higher dimensions.
Example 2.1. Let us examine the following three-dimensional linear time-fractional diffusion equation
(TFDE)

o°u ou 0"u 0°u
o o o5t ot

t>0,r,s,ze R,0<a<l.

(2.1.1)
Accompanied by the given initial condition
u(r,s,z,0)=sin(r)cos(s)cos(z). (2.1.2)
Following the Adomian Decomposition Method [2]
u,, (r.5,2,t) ==J*(b, (r,8,2)u, (1,8,2,t)+b, (r,s, Z)leuk (r,8,2,t)+...
+b, (, s,z)Lank (r,5,2,1)). (2.1.3)

Using equation (2.1.3) as our starting point, the recurrence relation follows naturally.

uy (r,s,z,t) =sin(r)cos(s)cos(z), (2.1.4)
u, (r,s,2,t)= I_alsin(r)cos(s)cos(z), (2.1.5)
a+
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u, (r,8,2,1) = 2i:Jrlsin(r)cos(s)cos(z), (2.1.6)

U, ——5 U, —— U, —

0” 0 0’ s .
or* o e

uM(r,s,z,t)zui(l’,S,Zat)"‘Jf{

(2.17)
We can represent the expression in series form as
3t” 9t* 27t .
ulr,s,z,t)=|1+ + + +....[sm(r)cos(s)cos(z).
( ) { la+1 [2a+1 [Ba+l } (r)eos(s)cos(z)
(2.1.8)

Using the Variational Iteration Method (VIM) [4], the associated iterative formula can be written in the following

form:

U, ——5u,——u,—

o
a e ?”’} @15

u., (r,s,z,t) =u, (r,s,z,t) +J/ {
Using equation (2.1.9), we can now formulate the corresponding recurrence relation.

uy (r,s,z,t) =sin(r)cos(s)cos(z), (2.1.10)

a

u (r,s,2,t)= (1+ I%Jsin(r)cos(s)cos(z), (2.1.11)

u, (r,s,2,t) = (1+ IL Iﬂjsm(r)cos(s)cos(z), (2.1.12)

/-1 i
rszt sz rsz £ +It“D+Jf’D:f+N(u) (2.1.13)
i=0
Based on the NIM [5], the corresponding formula is written as

I-1 i
u(r,s,z,t):Zpl.(r,s,z)t_—'+lt“D+Jt“C:f+N(u)
i=0 I

where

/-1 i

]‘=Z:pi (r,s,z)tE+Jt°‘D and t>0,r,s,zeR,0<a<l,, (2.1.14)

i=0 1
and U =f, Un+1=N(un), n=0,1,2, ..
where

uy (r,s,2,t) =sin(r)cos(s)cos(z).
Defining, N(u) = —J&[u? + u? + u?] the initial terms of the new iterative solution can be derived as
follows.
uy (r,s,z,t) =sin(r)cos(s)cos(z), (2.1.15)
u, (r,s,2,t) = sin(r)cos(s)cos(z), (2.1.16)
a+l1
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u, (r,8,2,1) = 290:+lsin(r)cos (s)cos(z), (2.1.17)
u3(r,s,z,t):%sin(r)cos(s)cos(z), (2.1.18)

We can express it through the series expansion

Rad 9¢” 27¢%

M(F,S’Z’t)z_1+|(Z+1+|2C¥+1+|305+1+“” sin (r)cos(s)cos(z). (2.1.19)
Table 2.1
t |p| a=0.5 a=.24 a=.74 a=1 Exact Error

02| 1| 5.158668 | 13.918793 | 2.410887 | 1.528110 | 0.673178 0.854932
5.574480 | 15.040714 | 2.605217 | 1.651286 | 0.727438 0.923847
0.865142 | 2.3342699 | 0.404322 | 0.256274 | 0.112894 0.14338

-4.63961 -12.51830 | -2.16831 | -1.37436 | -0.605443 | -0.768917
-5.87870 | -15.86160 | -2.74741 | -1.74141 | -0.767140 | -0.97427
03 | 1] 7.481961 | 17.603941 | 3.484620 | 2.041830 0.58904 1.45279

8.085040 | 19.022900 | 3.765497 | 2.206411 0.636507 1.569904
1.254773 | 2.9522922 | 0.584393 | 0.342428 | 0.098785 0.243643
-6.72913 -15.83264 | -3.13400 | -3.13400 | -0.529764 | -2.604236
-8.52630 | -20.06112 | -3.97101 | -2.32683 | -0.671248 | -1.655582
0.4 | 1| 9.996025 | 20.894782 | 4.798268 | 2.699439 | 0.504884 | 2.194555
10.80175 | 22.578998 | 5.185030 | 2.917025 | 0.545579 | 2.371446
1.676397 | 3.5041871 | 0.804700 | 0.452711 0.084673 0.368038
-8.99023 -18.79236 | -4.31547 | -2.42781 | -0.454082 | -1.973728
-11.3913 -27.26440 | -7.25053 | -3.07623 | -0.575356 | 2.500874

Dl B~ W N

| B W N

| B W N

Table 2.1 presents the results of the Time-Fractional Telegraph Equation (TFTE) obtained from equation (2.1.19) for 0=0.5, 0.24,

0.74 and o=1, along with the absolute error evaluated at a=1.

Example 2.2. The next illustration involves a 3-D linear TFTE.

ou . 0%u o’'u 0u 0o%u

e e e A (2.2.20)
t>0,1,5,zeR,0<a<]1.

under the given initial conditions

u(r,s,z,0)=sinh(r)sinh(s)sinh(z), (2.2.21)

u,(r,s,2,0)=—sinh(r)sinh(s)sinh(z). (2.2.22)

Referring to the ADM [2], the early components of the problem are constructed as follows:
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uy,, (1,8,2,t) ==J*(b, (1,8,2)u, (r,5,2,t)+b, (1,5, z)L]muk (r,8,2,t)+...
+b, (T, S’Z)Lnr,s,zuk (r,8,2,1)). (2.2.23)

From equation (2.2.23), we derive the corresponding recurrence relation

a

u, (r,s,z,t) = (1 —t— l%jsinh (r)sinh(s)sinh(z), (2.2.24)

4% 47T 1642
- + +
la+1 la+2 [2a+1

)sinh(r)sinh (s)sinh(z), (2.2.25)

ul(r,s,z,t):£

16¢** ~ 16¢2%* ~ 641>
Ra+1 2a+2 Ba+l

)sinh(r)sinh(s)sinh(z), (2.2.26)

U, (r,s,z,t) =[

The corresponding series expansion is

u(r,s,z,t):[l—t—

Referring to the VIM [4], the problem can be approached using the following iterative scheme,

81” . 41 . 32¢% ~ 1612 ~ 641
la+1 la+2 Ra+1 R2a+2 Ba+1

+...}sin(r)cos(s)cos(z). (2.2.27)

aZ(xu'
L+2 +u. !

o0"u, o’u. o’u, 0’u
. - -———-—11 2.2.28
atZ(x at(x 1 arZ aSZ aZZ j ( )

Uiy (t,r, Z’t) =y (t,r, Z’t)_(a_l)J?[

Using the initial guess 1, :sinh(r)sinh(s)sinh(z), within the iteration scheme, the following

approximation can be derived.

u1(r,s,z,t):(1—(0:—1)I%jsinh(r)sinh(s)sinh(z), 020
4¢* 41% 4ta+1
uz(r,s,z,t)=(l—(a—l)ﬁ_(a_l) a+1+(a_1)2 a+2+

2a
+(a —1)2 I%)sinh(r)sinh(s)sinh(z), (2.2.30)
41* 41* > 4"
,8,2,t)=(1—(a—1 —(ax—-1 -1 +
u3(rsz ) ( (a )lﬁ (0{ )a+1+(a ) a+?2
16> 2 16 3 16274
~1)° ~1) —=———(a-1
+(a ) 2a+1+(a ) 20 +1 (a ) 20+ 2
—(05—1)3 64 )sinh(r)sinh(s)sinh(z),
3l (2231)
a a a+l
u(r,s,z,z‘):(l—(oc—l)%—(o&—l)%Jr(a—l)2 :+2+
2a 2a 2a+1
+(0£—1)2 16¢ N 0{—1)2 16¢ B a_1)3 16¢
2a +1 2 +1 2 +2
3 6487 . .
—(a—l) |m)smh(r)smh(s)smh(z), (2.2.32)

Referring to the NIM [5], the problem can be approached through the following formula
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-1 i
u(r,s,z,t)zZpi(r,s,z)%+lt“D+Jt“C:f+N(u)
i!

i=0

where
/-1 ti
f:Zpi (r,s,z)E+Jf‘D and t>0,1,5,zeR,0<a<1,,
i=0 1
W=f, Un+1=N(u), n=0,1,2, .. (2.2.33)
Defining, N(u) = —J&[u? + u2 + uZ] the initial terms of the new iterative solution can be derived as
follows.
uy (ras,2,) =] 11 =2 Jsinh (r)sinh (s )sinh (=), (2.2.34)
a+l
4 At 16
u (r,s,z,t)=| — + + sinh (7 )sinh(s)sinh(z), 2.2.35
1 ) (|a+& [ +2 |2a+1] (r)sinh(s)sinh (2) ( )
1662 166" 64t
u, (r,s,z,t)= - - sinh (7 )sinh(s)sinh(z), 2.2.36
o ) ﬁ2a+i 2a+2 Ba+1 (r)sinh(s)sinh (2) ( )

The corresponding series expansion is

u(r,s,z,t)=[l—t—

As indicated by (2.2.27), (2.2.32), and (2.2.37), the ADM, VIM, and NIM approaches produce identical
solutions for the three-dimensional linear TFTE (2.2.20).
Table 2.2

8t” . 41 . 32¢% ~ 16¢2%* ~ 641°”
la+1 la+2 Ra+1 Ra+2 Ba+l

+ } sin(r)cos(s)cos(z). (2.2.37)

o

a=.5

a = .24

a=.74

a=1

Exact

Error

0.2

-1.403219

-12.204162

-0.304507

-0.219369

-0.23505

0.015681

-4.330559

-37.664013

-0.939756

-0.677014

-0.72538

0.048366

-11.96159

-104.03306

-2.595731

-1.870004

-2.00358

0.133576

W N

-32.58482

-283.39877

-7.071089

-5.094118

-5.45797

0.363852

0.3

-3.267968

-18.187894

-0.564224

-0.517089

-0.35255

-0.164539

-10.08547

-56.130774

-1741286

-1.595819

-1.08805

-0.507769

-27.85746

-155.04073

-4.809665

-4.407863

-3.00537

-1.402493

ENIVS N 9}

-75.88709

-422.34991

-13.10212

-12.00755

-8.18697

-3.82058

0.4

-5.884928

-24.126101

-1.022010

-0.673783

-0.47009

-0.203693

-18.16184

-74.457038

-3.154088

-2.079398

-1.45075

-0.628648

3

-50.16543

-205.66033

-8.712012

-5.743582

-4.00716

-1.736422

4

-136.6568

-560.24389

-23.73259

-15.64620

-10.917

-4.7292

Table 2.2 presents the results of the Time-Fractional Telegraph Equation (TFTE) obtained from equation (2.2.37) for

0=0.5, 0.25, 0.75 and a=1, along with the absolute error evaluated at o=1.
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Example 2.3. We focus on the three-dimensional linear TFWE given below.
0u 0u 0u 0d%u
o = 2 + 2 + 2
ot o’ 08" oz

under the given initial conditions

t>0,r,5,zeR,0<a<1. (2.3.38)

u(r,s,z,0)=sin(r)sin(s)cot(z). (2.3.39)
Based on the ADM [2]
uy,, (1,8,2,t) ==J*(b, (1,8,2)u, (r,5,2,t)+b, (1,5, z)L]Wuk (r,8,2,t)+

+b, (r,s,z)anuk (r,8,2,t)). (2.3.40)

Using the information provided in equation (2.3.40), the recurrence relation can be derived.
3t ).

u, (r,s,z,t)=£1— 1jsm(r)cos(s)cot(z), (2.3.41)
a+

ul(r,s,z,t):(—%+%Jsin(r)cos(s)cot(z), (2.3.42)

2a 3a
s (r,5,2,1) :( ¢ 27¢

Ra+1 Ba+l

Jsin(r)cos(s)cot(z), (2.3.43)

271 s 8114
Ba+1 lda+1

u3(r,s,z,t):(—

The corresponding series expansion is

u(r,s,z,t)={1—

Referring to the VIM [4], the problem can be approached using the following iterative scheme,

of 0%u, 0'u, o’u, Oy,
1+1(t I,z t) (t,r,z,t)—]t [ ot - or? N 552 N Py j

jsin(r)cos(s)cot(z), (2.3.44)

6t*  18£2%  549% 81
+ - +
la+1 Ra+1 Ba+l l4a+1

+ } sin(r)cos(s)cot(z).  (2.3.45)

(2.3.46)

Considering equation (2.3.46), we now derive the corresponding recurrence relation

a

g (ry5,2,1) = (l—l%]sin( )cos(s)cot (2), (23.47)

9’ ) .
r S, zt 1- sin(7)cos(s)cot(z), 2.3.48
[ lor+1 |a+1 |20{+1] (r)eos(s)eot (2) ( )
9¢*“ 91> 27£% ) .
r S, zt 1- + — sin(7)cos(s)cot(z), (2.3.49
[ lor+1 |a+l 2a+1 2a+1 |3a+lj (r)eos(s)eot(2). ( )
2a 2a 2 3a 2 3a 14(1 )
(r,s,z,t)=| 1- ot + o _2m 27 + 81t sin (r)cos(s)cot(z),
|a+1 |a+1 e+l Da+l Batl Batl Tzl

(2.3.50)

The expression takes the series form shown below
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a 2a 3a 4a
u(r,s,z,t)=£1—| o1 +|18t —|54t +|81t +...jsin(r)cos(s)cot(z).
Based on the NIM [5] and applying the corresponding formula, we obtain
(r,s,2,1) sz (r,5,2) +IZ“D+JI“C=f+N(u)
where
f= Z:p1 (r,s,2 |_+J°‘D and N(u) = J#C
and uw=/f, Uun+1=N(u), n=0,1,2,.. (2.3.52)
where
u(r,s,z,0)=sin(r)cos(s)cot(z).
Defining, N(u) = —]t u? + u? + u?] the initial terms of the new iterative solution can be derived as follows.
uy (r,s,2,t) (1 jsm r)cos(s)cot(z), (2.3.53)
2a
(r,s,2,t) [1 ljsin(r)cos(s)cot(z), (2.3.54)
+
9l20c 3a
(r,s,2,1) sin (r)cos(s)cot(z), (2.3.55)
a1 |3a +1
278 81t ) .
uy (r,s,2,0)=| - + sin (r)cos(s)cot(z), (2.3.56)
Ba+1 lda+1
The expression takes the series form shown below
a 20 3a 4o
u(r,s,z,t)z(l—l o +|18’ _|54’ +|8” +...jsin(r)cos(s)cot(z).
a+l Ra+1 Ba+l ld4a+l (2.2.57)
Table 2.3
t p a=.5 a=.24 a=.74 a=1 | Exact Error
02| 1-0.371148 | 3.605281 | -0.168271 | 0.078594 | -0.168289 | 0.000018

-0.401059 | 3.895886 | -0.181831 | 0.084930 | -0.181860 | 0.000029
-0.062244 | 0.604629 | -0.028220 | 0.013181 | -0.028225 | 0.000005
0.3338028 | -3.24253 | 0.1513366 | -0.07070 | 0.15137 -0.0000334
0.3 |1 |-0.284460 | 6.486497 | -0.393667 | -0.17306 | -0.252442 | -0.141225
-0.307390 | 7.009337 | -0.425399 | -0.18701 | -0.272790 | -0.152609
-0.047706 | 1.087827 | -0.066021 | -0.02903 | -0.042337 | -0.023684
0.2558376 | -5.83383 | 0.3540561 | 0.155646 | 0.227042 | 0.1270141
0.4 |1]0.1022785 | 9.617067 | -0.580143 | -0.37833 | -0.336589 | -0243554
21 0.1105226 | 10.39225 | -0.626905 | -0.40883 | -0.363720 | -0.263186
3 10.0171528 | 1.612843 | -0.097294 | -0.06345 | -0.056449 | -0.040845
41 -0.091988 | -8.64941 | 0.5217688 | 0.340259 | 0.302720 | 0.2190488

E-NI VS E B S

E-N VS N S}

Table 2.3 presents the Time-Fractional Wave Equation (TFWE) results, computed using the specified equation, for

0=0.5, 0=0.24, 0=0.74 and a=1, along with the absolute error evaluated at a=0.74.

Pi International Journal of Mathematical Sciences

(63)



https://pijms.com/

3. Conclusion

In this paper, we employed the Adomian Decomposition Method (ADM), the Variational Iteration
Method (VIM), and a systematic strategy to obtain solutions for three-dimensional, second-order hyperbolic
linear models, namely the Time-Fractional Diffusion Equation (TFDE), the Time-Fractional Telegraph
Equation (TFTE), and the Time-Fractional Wave Equation (TFWE). Our approach was implemented
directly, without introducing any linearization procedures or additional transformation assumptions. The
results demonstrate that the New Iterative Method (NIM) delivers highly accurate solutions, converges
rapidly to a stable state, and remains mathematically straightforward to apply even to complex
multidimensional (more than 2-D) physical problems encountered across various branches of engineering
and science.
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