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ABSTRACT 

In this paper, we propagated a generalized theoretical executable investigation for an improved SEIR mathematical 

model for infectious diseases. The model was constructed to determine a solution for a system of ordinary differential 

equations described in a deterministic immune population and studied under designated bilinear control functions. 

Analytic predictions for the system well-posedness was quantitatively conducted using theory of ordinary differential 

equations in conjunction with Lipschitz condition. An expression is obtained for the state-space and numerical 

computations determined. Results show that with induced bilinear control functions, rapid rejuvenation of the recovered 

and the susceptible was tremendously achieved. Moreso, the model exhibited compatibility for varying infectious 

diseases, provided there exists coherency to designated control functions. Therefore, the application of an improved 

generalized SEIR model under bilinear control functions is priori innovative for the amelioration and treatment of 

infectious diseases when compared with results of existing SIR models. 

Keywords: Generalized-SEIR-model, system-well-posedness, bilinear-control-functions, Lipschitz-condition, 

       existence-uniqueness, state-space.  
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1. Introduction 

Transmissible infectious diseases are becoming of significant global health concern as there have imposed 

significant devastations on varying organs of mankind. Though this present investigation does not capture a particular 

infectious disease, rather making attempt to present a simplified generalized infectious diseases model, we shall as well, 

focus on general reviews of infectious diseases and possible compactible mathematical models.    

Historically, infectious diseases are categories of transmissible viruses, pathogens, bacteria, fungi and protozoa, 

most of which are considered as airborne diseases as well as vector carriers [1,2]. Commonest among other infectious 

diseases include but not limited to: influenza, West Nile, filariasis, malaria, chikungunya, dengue, mumps, whooping 

cough, measles, smallpox, chickenpox, SARs, COVID-19 and many more [3,4,5]. Of interest, is the fact that the 

invisibility and indistinguishable nature of most infectious disease transmissions have made these classes of diseases a 

serious threat to mankind and hence, a source of global concern [6,7]. The transmission of infectious diseases could be 

hypo-transmissibility (human-to-human) or hyper-transmission (environment-to-human) with air and sex as the 

commonest windows [8,9,10]. The control and treatment of infectious diseases have been among other methods, the use 

of vaccines and designated treatment and/or chemotherapies. Essentially, vaccines are regarded as pathogenic micro-

organisms, which simulates the immune system, leading to the build-up of antibodies against foreign microbes [1,14]. 
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That is, the application of vaccines enhances the immune system against specific microbes, thereby acting as a protective 

mechanism to the population against specific diseases. 

Remarkably, the understanding of disease transmission, control and treatment as well as prevention has been among 

other methods, the use of mathematical modeling, which is considered instrumental in the studying of the dynamics of 

infectious diseases. An early simplified mathematical model has been the SIR (Susceptible-Infectious-Recovered) 

models and recently, enhanced with the incorporation of the Exposed class - the SEIR mathematical models. For 

instance, one of the earliest comprehensive models, proposed by Anderson and May in the 1980s, introduced a basic 

SIR model for studying of hepatitis B infection dynamics. The study demonstrated how vaccination could significantly 

reduce the prevalence of chronic HBV [15]. Basic differential equations were explored and stability analysis conducted. 

The result of which was innovative with incisive leeway to decision making. Furthermore, [5]. conducted stability 

analysis and optimal vaccination of infectious epidemic model, using the SIR mathematical model. The study 

investigated the model equilibria and established the existence of optimal control for the system with results, which was 

a significant to the understanding of the dynamics and treatment of infectious diseases. [16], provided a more improved 

SIR model with some realistic assumptions. That model was subjected to four classified conditions and tested for 

accuracy using Visual Basic (VB). Results of simulations showed that due to those conditions, infections declined 

rapidly, leading to high recovery rate when compared with other existing SIR models. Perturbingly, the emergence of 

COVID-19 further fronted the use of SIR mathematical models. For instance, in India, as a case study, SIR mathematical 

model was initiated in the investigation of the occurrence of COVID-19 [18]. In that study, the analysis of the model 

explored the Euler’s method. The results of model simulations indicated that a systematic spread of the virus was 

eminent, leading to possible outbreak. Remarkably, the result suggested that the SIR model via Euler’s method was an 

efficient tool for prediction of disease transmission and prevention. 

As an improvement to the SIR models, the recent incorporation of the exposed subpopulation became eminent, 

leading to: Susceptible – Exposed – Infected – Recovered (SEIR) mathematical models. For instance, using the SEIR 

mathematical approach, a model that studied the effect of monolytic control function – vaccine use, on the dynamics of 

infectious diseases was formulated [1]. That study focuses on the impact of mono-vaccine on infectious epidemic with 

compactible analytic predictions conducted. The results obtained indicated that the application of vaccine as designated 

disease control, have the potency to inhibit disease outbreak, provided productivity ratio is less than unity.  

Remarkably, from resourceful reviews of existing literatures, is the fact that studying of the spread of infectious 

diseases in time and space, using the SIR – SEIR models are geared towards gaining a better understanding of disease 

transmissions as well as to evolve predictions and possible evaluations of treatments and control strategies [7,13,17]. 

Therefore, this present research seeks to possibly institute a number of vital scientific remedies as against the study 

statement of problem by incorporating a more extended SEIR model from some existing models [1,5]. That is, we 

present a modified generalized SEIR model that redefined system incidence rate as a function of trilinear state space 

with the infusion of designated bilinear control functions – designated treatment and/or chemotherapy and vaccination 

occasioned by realistic assumptions. More importantly, the analysis of desired system is targeted to explore the interplay 

of bilinear control functions.  

In a directional format, the entire investigation is composed of the introductory aspect and the incisive literature 

review on section 1. Section 2, focuses on the materials and methods constituted by the system statement of problem, 

formulation of desired model. The system mathematical propagation and analysis are viewed in section 3. In section4, 

we demonstrate some numerical computations with illustrative simulations. Analyses and discussion of derived results 
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in comparisons with compactible existing results is overcome in section 5. Finally, we deduce incisive summary and 

recommendations based on available findings in section 6. Explicitly therefore, the present investigation is geared 

towards giving an insight to the potencies of both modified SEIR model as a tool and the impact of bilinear controls on 

a generalized SEIR infectious model. 

2. Materials and Methods 

The materials and methods for this research is characterized by the system statement of problem and formulation of 

system model. The model cogently explored a set of Dimensional deterministic ordinary differential equations. Moreso, 

the materials are constituted by the interplay of 4 – sub-population with thematic investigation evolving round a 

combination of bi-linear control functions (designated treatment and/or chemotherapy and vaccine). System formulation 

and mathematical analysis deployed fundamental theory of ordinary differential equations in conjunction with Lipschitz 

criterion. The aspect of illustrative numerical simulations explicitly explores classical in-bult Runge-Kutta of order of 

precision 4 in a Mathcad surface.  

2.1. Problem statement of the study 

Clearly, aligning from existing scientific literatures on transmission of infectious diseases, its treatment and controls 

mechanisms, it’s obvious that mathematical modeling have become a vital tool. The use of mathematical modeling of 

infectious diseases had its bases from the use of the SIR - SEIR models. For instance, adjudging from relatively 

compactible models to the intense of this present investigation, is the SEIR model developed with linear vaccination 

that studied the interplay of varying compartments of designated sub-population [1]. Remarkably, a critical review of 

this model revealed some incisive scientific lapses, which forms the nucleus of this present research. These includes: 

i. That the aforementioned model was devoid of any treatment and/or chemotherapy. 

ii. Incidence rate was only a function of two consequential interactive processes (only the infectives and 

recovered). 

iii. The model never accounted for the mathematical well-posedness of derived model. 

Therefore, incorporating these aforementioned lapses, the present investigation seeks to depict a modified generalized 

deterministic mathematical model that redefine the modified incidence rate as a function of the exposed compartment. 

Essentially, the present investigation is geared towards presenting an insight to a generalized modified SEIR infectious 

mathematical dynamics with the infusion of designated bilinear control functions – designated treatment and/or 

chemotherapy and vaccination.  Moreso, the study seeks not only to importantly verify the well-posedness of the 

anticipated complex proposed model but also, investigate the positivity of the ascribed state-space of the model and the 

uniqueness of solution using Lipschitz condition.  

Definition: (Lipschitz condition) 

In particular, Lipschitz condition is defined as: let ,x x be real variables and let :[ , ]f a b →   be a function. 

Then, f is said to satisfy the Lipschitz condition if there is a constant M such that ( ) ( )f x f x M x x −  −    

, [ , ]x x a b , where M is the Lipschitz constant.  

2.2.  Mathematical formulation of model equations 

In this sub-section, attempting to overcome the existing study statement of problem, we align with study motiving 

model [1]. Remarkably, in that model, the population understudy was partitioned into: susceptible ( )S t , the infectious 

( )I t and the recovered ( )R t . The epidemiological derived model is given by 
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.   (1) 

The details of eqn. (1) can be accessed as reference above. Now, suppose we extend model (1) with the incorporation 

of modified exposed compartment to consider a SEIR mathematical deterministic dynamic infectious model, then we 

have subpopulations denoted by susceptible ( )pS t , the exposed ( )pE t .the infectious ( )pI t and the recovered ( )pR t . Since 

our population is a complete representation of a set of living organisms and posed to be a real-life epidemic outbreak, 

then the investigation of interplaying varying subpopulation can be subjected to some designated bilinear control 

functions in the form if compactible treatment and/or chemotherapy  and inducible vaccination
i , 1, 2i = for all 0i 

.Furthermore, a reliable infectious mathematical model is bounded and is sustained by clear and succinct assumptions. 

That is, the guiding assumptions of this study, which align with existing assumptions are as contained in assumption of 

the model. 

Assumptions of the model 

The following have been considered as the assumptions of the model: 

i. Population interaction is homogeneous, i.e. ( ) ( ) ( ) ( ) ( ) 1p p p pN t S t E t I t R t= + + + =  

ii. System birth rate must surpass natural clearance rate, i.e.
pb  for all ( , ) 0pb    

iii. Only the susceptible and infectious receive vaccination, i.e. 0i  for all 1, 2i = such that
2 1  . 

iv. Only the infectious are exposed to treatment and/or chemotherapy, i.e. 0  . 

v. Only the infectious die due to infection, i.e. 0  . 

vi. Infection could re-occur after prolong vaccination, if 0i  . 

Therefore, by extending the study motivating model (1) and using aforementioned assumptions, the epidemiological 

SEIR model equations are derived as seen in the differential dynamics of model (2): 
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where  
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3

1 1 2 2 3 3
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p p p
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c E c I c R

N
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 =
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with ( ) ( ) ( ) ( ) ( ) 1p p p pN t S t E t I t R t= + + + = and ˆ ( ) ( ) ( ) ( )p p pN t E t I t R t= + + . Notably, eqn. (2) holds, provided the initial 

conditions
0 0 0( ) 0, ( ) 0, ( ) 0p p pS t E t I t   and 

0( ) 0pR t  for all 
0t t is satisfied. Moreso, eqn. (3) is the model incidence 

rate also known as the force of infection or system mass action. That is, eqn. (3) is defined by a trilinear novel incidence 

coefficient i.e. ( )i i

p p p

c
E I R

N


+ +  for all 1, 2,3i = .  
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Therefore, for a more explicit representation of model (2) in conjunction with outlined model assumptions, the 

schematic representation of derived model is as in fig. 1. 

 

 

Fig. 1:  Schematic representation of a SEIR model under bilinear control functions  

A critical descriptive and review of model (2) alongside fig.1 is depicted by tables (1 & 2) 

Table 1:  Description of state components for model (2) 

State space Description of dependent variables 

( )pS t  Susceptible subpopulation not yet infected 

( )pE t  Exposed subpopulation at asymptomatic stage of infection 

( )pI t  Infectious subpopulation at symptomatic stage 

( )pR t  Recovered subpopulation due to bilinear control functions 

 

Table 2:  Description of constants and parameter for model (2) 

Parameters 

& symbols 

descriptions Parameters 

& constants 

pb  Natural birth rate, i.e. 0pb   

  Natural death rate, i.e. 0   

1,2,3,i i =
 Incidence rate (mass action) 

  Proliferation of recovered population, i.e. 0   

  Rate at which the exposed become infected, i.e. 0   

, 1,2i i =
 Rate of vaccination of ( )pS t and ( )pI t  

  Rate at which the infectious receive treatment 

  Clearance rate due to infection, i.e. 0   
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Furthermore, the epidemiological description of model (2) as in fig. 1, are as follows: from the first equation of the 

model, describing the biological implication, we note that the differential behaviour of the susceptible increment is 

defined by incoming natural birth rate 
pb , together with proliferating recovered population under declined immunity

. Population mutation in this compartment is due to continuous interactions with the varying infectious subpopulations 

denoted by ˆ( )i N− ; the rate of immunization of the susceptible
1− and declined due to natural clearance rate − . Taking 

on the second equation of the model, which depicts the differential derivative of the exposed compartment, the sustaining 

population here, is the mass action defined by the incidence rate ˆ( )i N . This subpopulation gradually depleted as there 

become infectious at a rate −  as well as natural death rate − .  

On the other hand, the infectious compartment depicted by differential equation three, is sustained by the incoming 

infectious population   and the gets depreciated by the rate at which the infectious receive treatment and getting 

vaccinated 
2( ) − + as well as death due to both natural effect and due to infection ( ) − + . The final equation 

depicting the differential amplitude of the recovered subpopulation is confined by recovered due to bilinear controls

2( ) +  and rate at which the susceptible receive vaccine
1 . Here, population declines due to gradual deterioration of 

immunization. − and natural clearance rate − . 

Next, following the formulation of system model, it becomes pertinent that we verify the system compositions and 

its well-posedness. We achieve this by diffusing in our next section, the mathematical properties (system mathematical 

analysis). 

3. Mathematical Analysis of Derived Model 

In this section, we focus on the mathematical properties of derived system (2), which is characterized by the 

evaluations of the epidemiological well-posedness. That is, we show that all the state space exhibits non-negative 

solutions; determine that there exists boundedness of system solutions and finally, to show that the state space exists 

and is unique. 

3.1. Positivity of system solutions  

The concept of positivity of system composition enables the verification that solutions of the system remain non- 

negative for all t o . This task is accomplished using the following theorem. 

 

Theorem 1 (Positivity od system solutions) 

Suppose   4(0), (0), (0), (0),p p p pS E I R + denote initial conditions for system (2) for all  t o . , then there exists a 

solution set   4( ), ( ), ( ), ( ),p p p pS t E t I t R t + for system (2) and is positive for all  t o . 

Proof 

The prove of this theorem will access existing results for non-negativity of solutions [8,19,20,21]. In this case, model 

(2) is then confined in compact form as: 

4( , , , ) : ( ) ( ) ( ) ( )
p

p p p p p p p p

b
S E I R N S t E t I t R t


+

 
 =  = + + +  

 
. 

Suppose ( )( ) ( ) ( ) ( )p p p pS t E t I t R t+ + + is any solution and having non-negative initial conditions, 

( ) ( ) ( ) ( )p p p pN S t E t I t R t= + + + . Then, at zero mortality rate (i.e. 0 = ), the time derivative of ( )N t in the direction of 

system (2) is computed as: 
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( ) p

p p p p p

bdN
b S E I R N

dt
 


= + + +  −  

for all 0 = . Applying the theorem of differential equations and taking the integral factors and imposing initial 

conditions, the evaluation of the system yields the result 

( )( ) (0) 1 0
pt t

b
N t N e e 



− −= + −   

or 

( ) (0) 0
p p t

b b
N t N e 

 

− 
= + −  

 
.    (4) 

Taking the limit of eqn. (4) as t →  , we obtain 

lim ( ) 0
p

t

b
N t

→
=  .     (5) 

From eqn. (5), it becomes clear that the solutions of all the state components is bounded in 4

+ and is confined in the 

region  , for all [0, )t   . Hence, the required result.              

3.2. Invariant Region of System Solutions 

Having shown that non-negativity of solutions exists for system (2), then we further show that this non-negative 

solution is bounded within the invariant region for all 0t  . This boundedness of solution is satisfied by the following 

theorem. 

Theorem 2 (Boundedness of system solutions) 

Let the system be bounded in the closed set 4( , , , ) :
p

d p p p p

b
S E I R N


+

 
 =   

 
. Then, all solutions of this closed 

set
d is bounded, non-negatively invariant and attracting absolutely for system (2). 

Proof 

 Invoking existing results for boundedness for solutions (for example, see: [2,19,23]. Then, form the differential 

sum of system (2), we have 

p p p pdS dE dI dRdN

dt dt dt dt dt
= + +  

                      ( )p p p p p pb S E I R I = − + + + −  

This implies that  

p p

dN
b N I

dt
 = − − ,      (6) 

where ( ) p p p pN t S E I R= + + + . Now, in the absence of mortality rate due to infection, then the population understudy is 

absolutely devoid of infection i.e. 0 = . In this case, eqn. (6) becomes 

p

dN
b N

dt
= − . 

Applying separation of variables, we have 

p

dN
N b

dt
+  . 

By integrating factor i.e. 
t dt tIF e e

 = = , we obtained 
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t t t

p

dN
e e N b e

dt

  +   

or 

t t

p

d
Ne b e

dt

     . 

Further integration gives 

pt t
b

Ne e C 


 + , 

where C is the constant of integration. If we now simplify the above, we get 

( )
p t

b
N t Ce 



− + .     (7) 

Introducing the initial condition 0t = to eqn. (7) and solving for C , we have  

(0)
pb

N C


 +  

or 

(0)
pb

N C


−  .      (8) 

Substituting eqn. (8) into eqn. (7), yields 

( ) (0)
p p t

b b
N t N e 

 

− 
 + − 

 
 

or 

( ) (0) 1
pt t

b
N t N e e 



− −  + −  ,     (9) 

where (0)N is the initial population at time 
0 0t t= = . This further yield ( ) (0)N t N as 0t → and ( )

pb
N t


 as t →  . 

Then, by Birkhof and Rota’s theorem for differential inequality for all t →  , we arrive at 0 ( )
pb

N t


  for all 0t  , 

[24]. Now, by well-posedness of system (2), it implies that  

0
p p p pdS dE dI dR

dt dt dt dt
= = = = . 

This implies that  

0
dN

dt
= . 

Integrating both sides, yields 

N C= , 

where C is a constant. But we know that sum of population understudy is unity i.e.  

1p p p pN S E I R= + + + = . 

Then, it is deduced that  

1N C= = . 

This surmount to the fact that population is constant, non-negative and equal unity. That is, all feasible solutions of 

system (2) are constant in the region 
d  i.e.  
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 4( , , , ) : 1d p p p p p p p pS E I R S E I R+ =  + + + = . 

Then, we ascertain that the region is bounded, non-negative and attracting. Hence, derived model is mathematically 

well-posed in the region 
d and thus, is epidemiologically viable in 

d . This completes the proof.     

3.3. Existence and uniqueness of system solution 

Here, the investigation shall have explored the concept of Lipschitz condition as a vital tool for the determination 

of the existence and uniqueness of the system solution. 

By definition of Lipschitz condition, let :[ , ]g x y →  be a function, then g is said to satisfies Lipschitz condition, if 

there is a Lipchitz constant G such that ( ) ( )g s g s G s s −  −   for all , [ , ]s s x y , where G is the Lipschitz constant 

[19,26]. Now, let the complex set be defined by 4: + →  such that  

( )( ) ( ) ( ) ( )p p p pt S t E t I t R t+ + + and 4:Q + →   

such that  

( )( )* * * *( ) ( ( )) ( ) ( ) ( ) ( )p p p pt Q t S t E t I t R t  = + + + . 

Then,  

( ) 0( ) ( ), (0)t Q t   = = . 

Exploring the above definition, the following theorem holds for existence and uniqueness of system solution. 

Theorem 3 (Existence and Uniqueness) 

 Let system (2) be a typical function said to be continuous and satisfies definition 1. Then, the existence and 

uniqueness of solution for system (2) holds, provided there exists a Lipschitz condition. 

Proof 

We invoke established results for existence and uniqueness of solution [8,25,26], Then, we investigate system 

(2) starting with the first equation and by inductive argument, same holds for others. That is, let  

1
ˆ( , ) ( )p p p i p p p

dH
H t S b R N S S S

dt
   = = + − − − .    (10) 

Applying eqn. (3) for ˆ( )i N and taking the partial derivative of eqn. (10), we have  

3

1

1

( , )
ˆ( ) ( )

p

i i

ip

H t S
N c

S
  

=

  
= − +   

 ,  1, 2,3i = .    (11) 

Eqn. (11) shows that ( , )pH t S and its partial derivative are defined and continuous for all ( , )pt S . Then, by inductive 

reasoning, the right-hand side of the remaining equations of system (2) and their corresponding partial derivatives satisfy 

the existing conditions. That is, by existence and uniqueness theorem, there exists a set of unique solution existence and 

uniqueness theorem ( ) ( ) ( ) ( )p p p pS t E t I t R t+ + + in some open interval with Centre at
0t . Next, we then show that this set 

of solution satisfies the Lipschitz condition. Now, from eqn. (10), it can be seen that  

3

(1) 1 (1) (1)

1

(1) (2) 3

(2) 1 (2) (2)

1

ˆ( )

( , ) ( , )

ˆ( )

p p i i p p p

i

p p

p p i i p p p

i

b R N c S S S

H t S H t S

b R N c S S S

   

   

=

=

+ − − −

− =

− + − − −




 

 ( )
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( )
3

1 (1) (2)

1

ˆ2 ( )p i i p p

i

R N c S S   
=

  
 − + + −  

  
 . 

This implies that  

(1) (2) (1) (2)( , ) ( , )p p p pH t S H t S M S S−  − ,    (12) 

where 
3

1

1

ˆ2 ( )p i i

i

M R N c   
=

 
= − + + 

 
  is a Lipschitz constant. Then, by inductive reason, it shows that the remaining 

state-space satisfies the Lipschitz condition. Therefore, it is suffix to say that there exists unique solution set 

 ( ), ( ), ( ), ( )p p p pS t E t I t R t for the system (2) for all 0t  . This completes the proof.      

Next, we focus next to some illustrative numerical computations as to ascertain the numerical viability of our 

analytic predictions. 

4. Numerical Computations 

In this section, we attempt to exhaust the insight to the study intense by conducting some numerical computations  

of the system analytic predictions as in section 3 with the consideration of its application to real-life situations. Here, 

we adopted certified empirical data to illustrate two sets of epidemiological examples i.e. case of off-treatment scenario 

and at onset-treatment scenario. 

The entire simulations are accomplished using in-built Runge-Kutter of order of precision 4 in a Mathcad software. 

Furthermore, by extending tables 1 & 2, a corresponding compact form along with empirical data is obtained as in table 

3: 

 Table 3: Value specifications for state-space and parameters variables for model (2) 

State space Parameter variables 

Symbols Values Source  Symbols Values Source  

pX  0.4 [1, 8] 

(Alimi & 

Ayoade, 2023; 

Bassey & 

Igwe, 2022) 

pb  0.247 [19] (Alimi & Ayoade, 2023) 

pE  0.1   0.31 

pI  0.1 1,2,3i =
 0.5;0.1;0.5 [26] (Bassey et al. 2023) 

pR  0.1   0.5 [29] (Ayoade et al. 2019) 

   0,35 [1] (Alimi & Ayoade, 2023) 

1,2i =
 0.4; 0.45 Estimated 

  0.4 Assumed 

  0.4 [1] (Alimi & Ayoade, 2023) 

1,2,3ic =
 0.5; 0.5; 0.5 [7] (Bassey & Lebedev, 2016) 

 

4.1. Numerical simulation under off-treatment ( , ) 0i  =  

Using table 3 at ( , ) 0i  = , we simulate system (2) at off-treatment scenario. For instance, fig. 2(a-d) depicts  

the required simulations with program algorithm denoted by appendix A. 
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a) Susceptible popn. under off-treatment, 0.247pb =  

 

 

b) Exposed popn. under off-treatment, 
1 0.5 = ,

1 0.5c =  

 

c) Infected popn. under off-treatment, 
2 0.1 = ,

2 0.5c =  
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d) Recovered under off-treatment, 
3 0.5 = ,

3 0.5c =  

Fig. 2 (a-d): SEIR infectious dynamic model under off-treatment scenario 

 

Fig. 2(a-d) depicts simulation of basic model (2) in off-treatment scenario. For instance, form fig. 2(a), we observed 

that the susceptible under off-treatment scenario exhibited rapid concave –like declination at 8ft  months with 

0.329 ( ) 0.4pS t  and attained steady declined stability at 10 30ft  months. For fig. 2(b), where the exposed 

subpopulation experienced off-treatment environment, the compartment exhibited rapid asymptomatic symptoms of 

infection at 3ft  months with 0.1 ( ) 0.164pE t  and the assumed steady state of ( ) 0.57pE t  for all 10 30ft  months. 

Furthermore, at off-treatment condition, fig. 2(c), which represent the infectious compartment exhibits similar 

epidemiological behaviour as in fig.2(b). Here, inclined infection rate stood at 0.1 ( ) 0.144pI t  and remain steady for 

all 10 30ft  months. Under no control functions, the recovery compartment as depicted by fig. 2(d), shows rapid 

population extinction due to lack of any control functions i.e. 122.797 10 ( ) 0.1pR t−    at the earliest interval of 8ft  . 

4.2.  Numerical simulation under onset-treatment ( , ) 0i    

With the inducement of designated bilinear control functions in the form of chemotherapy and vaccine, we illustrate 

the input of treatment on system (2) as depicted in fig. 3(a-d). we denote the program algorithm by appendix B. 

 

a) Susceptible popn. under onset-treatment, 0.347pb =  
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b) Exposed popn. under off-treatment, 
1 0.5 = ,

1 0.5c =  

 

 

c) Infected popn. under off-treatment, 
2 0.1 = ,

2 0.5c =  

 

d) Recovered under off-treatment, 
3 0.5 = ,

3 0.5c =  

Fig. 3 (a-d): SEIR infectious dynamic model under off-treatment scenario 

Here, fig. 3(a-d) depicts system simulations under onset control functions i.e. introduction of bilinear controls if the 

form of chemotherapy and designated vaccine. For instance, fig. 3(a) which represent the susceptible under onset-

treatment exhibited rapid convex-like curve with 0.389 ( ) 0.438pS t  for all months. In fig. 3(b), which depicts the 

exposed subpopulation, we see the compartment exhibiting some slight inclination of asymptomatic infection stage with 

0.1 ( ) 0.266pE t  for all 10 30ft  months. 
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The infectious compartment under bilinear control functions as in fig.3(c), clearly vindicated the inducement of 

control functions as we observed rapid declined viral load in the earliest interval of 3ft  months with 0.043 ( ) 0.1pI t  . 

Infection is then seen to rise slightly to ( ) 0.06pI t   at 10 30ft  months due to consistent exposure. Finally, from fig. 

3(d), where recovery due to presence of control functions, we observed rapid inclined parabolic-like smooth curve at 

10ft  months with 0.1 ( ) 0.279pR t   and then sustained steady state at that region for all 10 30ft  months.  

5. Discussion of Results 

So far in this research, we have formulated as an improvement of existing result [1], a simplified generalized SEIR 

mathematical model that seek to addressed the insight to the mathematical properties of a well-posed infectious model 

as well as determined the consequential impact of the application of induced bilinear control functions (in the form of 

treatment and/or chemotherapy and vaccine). The materials and methods explored a set of 4-Dimensional mathematical 

subpopulations investigated using bilinear control functions. Analytic predictions of model well-posedness was 

conducted using fundamental theory of differential equations in conjunction with Lipschitz condition.  

Following derived model, the study was numerically computed in two illustrative examples, using in-built Gunge-

Kutter of order of precision 4 in a Mathcad surface. Firstly, the case of off-treatment scenario was considered, followed 

by the application of onset-treatment – the assumed designated bilinear control functions.  Remarkably, under off-

treatment it was observed that the susceptible exhibited rapid population declined due to lack of any control functions 

as in fig. 2(a) with fig. 2(d) characterized by population extinction within months intervals of 8ft  . Both figures were 

in consonant with exiting results under similar conditions [1,7]. Furthermore, the consequential high clearance rate of 

the susceptible is a clear vindication of the rapid spread of the infection for both the exposed and infected compartments, 

see figs 2(b & c). A similar case study can be found in the investigation of HIV transmission dynamics [22].  

Resourcefully, following the introduction of designated control functions, we saw an enhanced rejuvenated 

susceptible (fig. 3(a)) as well as rate of rapid recovered compartment – fig. 3(d). Moreso, unlike in the absent of control 

functions, where the exposed and infected compartments exhibited rapidly inclined infection rates on a contact average 

rate of 0.5 per day, at the onset-treatment system, we observed tremendous infection declination (see figs 3(b & c)). 

Clinically, these results are in affirmation of existing results where control function were cogently administered [23,26]. 

6. Conclusion and Recommendations  

In this investigation, a 4 – Dimensional deterministic SEIR mathematical model have been formulated. The entire 

research has been conceived to addressed the challenging needs for a simplified generalized SEIR mathematical model 

that account for the treatment and control of infectious diseases dynamics. The model seeks and presented an insight to 

a simplified generalized mathematical model for the smooth understanding of the treated dynamics of infectious diseases 

epidemics. The investigation was conducted in the presence of bilinear control functions considered as designated 

treatment and/or chemotherapy with induced vaccine. 

As a leverage, a control model of off-treatment scenario was as well conducted together with the onset-treatment 

scenario. Results indicated that at off-treatment scenario, subpopulations at varying compartments exhibited near 

population extinction. On the contrary, with the introduction of bilinear control functions, both the susceptible and 

recovered compartments exhibited tremendous population rejuvenations. These was evidence by the rapid contraction 

of the infectious compartments, a situation, which can be attributed to inducement of control functions. Moreso, the 

exposed compartment served as an indicator to the dynamics of infection proportion in view of the off-and-onset 

treatment analysis. The study therefore, recommends the SEIR modified generalized mathematical model for routine 
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intense application to real-life control measures for infectious diseases, provided there exits coherent adherence to 

appropriate medical specification.  
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Appendices  

Appendix A:  Program for Untreated basic SEIR model 

 system parameters 

 

 

 

 

 

 

 

 

 

Result 

 

 

 

Appendix B:  Program for Treated basic SEIR model 

 system parameters 

 

 

 

 

 

 

 

 

 

 

ORIGIN 1=

J rkfixed H 0 T n F ( )

1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 0.4 0.1 0.1 0.1

0.03 0.4 0.102 0.1 0.098

0.06 0.4 0.105 0.1 0.095

0.09 0.4 0.107 0.1 0.093

0.12 0.399 0.109 0.1 0.091

0.15 0.399 0.111 0.1 0.089

0.18 0.399 0.113 0.1 0.086

0.21 0.399 0.115 0.1 0.084

0.24 0.398 0.117 0.1 0.082

0.27 0.398 0.119 0.1 0.08

0.3 0.398 0.121 0.1 0.078

0.33 0.397 0.122 0.101 0.077

0.36 0.397 0.124 0.101 0.075

0.39 0.396 0.126 0.101 0.073

0.42 0.396 0.127 0.101 0.071

0.45 0.396 0.129 0.102 ...

==

ORIGIN 1=
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Result 
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J rkfixed H 0 T n F ( )

1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 0.4 0.1 0.1 0.1

0.03 0.399 0.103 0.096 0.105

0.06 0.397 0.105 0.093 0.109

0.09 0.396 0.108 0.09 0.114

0.12 0.395 0.111 0.087 0.118

0.15 0.394 0.113 0.084 0.122

0.18 0.393 0.116 0.082 0.126

0.21 0.393 0.118 0.079 0.129

0.24 0.392 0.12 0.077 0.133

0.27 0.391 0.123 0.074 0.136

0.3 0.391 0.125 0.072 0.139

0.33 0.39 0.127 0.07 0.143

0.36 0.39 0.129 0.068 0.145

0.39 0.39 0.131 0.067 0.148

0.42 0.389 0.133 0.065 0.151

0.45 0.389 0.135 0.063 ...

==
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