'l' Pi International Journal of Mathematical Sciences
© PIIMS | Volume 1 | Issue 2 | October 2025 | ISSN: 3107-9830 (Online)

1IJMS o
PERFORMANCE ANALYSIS OF EDWARDS ELLIPTIC
CURVES USING VEDIC MATHEMATICS FOR SECURE
AUTHENTICATION PROTOCOLS IN ECC

Chani Saini', Dr. Sandeep Kumar Tiwari’, Dr. Ankur Nehra®

'Research Scholar, Department of Mathematics, Faculty of Science, Motherhood University, Haridwar, Uttarakhand,
24766, India

Email ID: sainichani67@gmail.com

2Supervisor, Department of Mathematics, Faculty of Science, Motherhood University, Roorkee, Uttarakhand, 247667,
India

Email ID: fos.sandeep@motherhooduniversity.edu.in

3Co-supervisor, Department of Mathematics, Dhanauri P.G. College, Dhanauri, Haridwar, Uttarakhand, 247667, India
Email ID: drankurnehra648(@gmail.com

Corresponding Author: Chani Saini, Research Scholar (sainichani67@gmail.com )

Received: 01 October 2025 | Accepted: 25 October 2025 | Published: 30 October 2025

ABSTRACT

In order to create effective implementations of point addition and point doubling algorithms for
Edwards elliptic curves, this paper investigates the use of Vedic mathematical approaches. The goal of the
suggested approach is to improve Edwards elliptic curve cryptography (ECC) procedures processing
efficiency. In particular, the Urdhva-Tiryagbhyam sutra is used to optimize multiplication procedures, and
the Dvandva-yoga method is used to speed up squaring operations. These methods are used to provide two
optimized cryptographic formulations for Edwards elliptic curves: point addition and point doubling. In terms
of execution speed, processing time, and lower multiplier power consumption, experimental evaluations show
that the Vedic mathematics-based methodology performs noticeably better than traditional arithmetic
methods. Point addition and scalar operations are implemented in MATLAB utilizing 16-bit and 32-bit
operands. Additionally, a number of Vedic mathematical methods are examined to determine how they affect
elliptic curve calculations; the findings are displayed using detailed tables and graphical representations.
The results demonstrate how Vedic mathematics can significantly increase the effectiveness and performance

of elliptic curve cryptography systems.
Keywords: Finite field, UTT, DYT, EEC, Points addition, Point doubling.
MSC: 94460, 14G50

-. This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International License. (44)




https://pijms.com/

1. Introduction

Elliptic curves have been essential to the development of cryptography methods for a number of
decades. Elliptic curves can be represented in a variety of ways, such as Weierstrass, Edwards, Hessian, Huff,
and Jacobi forms. These alternative models are particularly significant in cryptography because they enable
effective computational operations like point addition and point doubling. This work focuses on two such
alternative models: the Edwards curve and the twisted Edwards curve. The Edwards curve, introduced by
Harold Edwards in 2007, represents a family of elliptic curves characterized by simple and efficient arithmetic
operations. The twisted Edwards curve, proposed and analyzed by Bernstein, Birkner, Joye, Lange, and Peters
in 2008, generalizes the Edwards curve and significantly broadens its applicability. Subsequently, Hisil et al.
(2008) derived explicit and complete addition formulas for twisted Edwards curves, enabling uniform and
secure implementations. In 2015, Kim, Yoon, Kwon, Park, and Hong proposed a hybrid isogeny-based
cryptosystem employing Edwards curves, reflecting the growing interest in isogeny-based approaches due to
their compatibility with classical elliptic curve structures and relatively small key sizes. Further advancements
include the coordinate system for twisted Edwards curves introduced by Shirase (2016), which utilizes
extended coordinates and achieves scalar doubling costs comparable to the lowest known mixed-coordinate
methods while simplifying scalar multiplication. In parallel, Bianco and Gorla (2016) presented optimal
representations for elements of prime-order subgroups on twisted Edwards curves, along with efficient
compression and decompression algorithms and a comparative performance analysis against Weierstrass-form
curves. Addressing practical security concerns, Dugardin, Guilley, Moreau, Najm, and Rauzy (2017)
examined extension fault attack models and proposed effective countermeasures for elliptic curve scalar
multiplication, demonstrating protected implementations on Edwards and twisted Edwards curves. In the same
year, Bessalova and Tsygankova (2017) investigated points of orders 2, 4, and 8 on generalized Edwards
curves and classified these curves into three distinct categories. The applicability of Edwards curves to post-
quantum cryptography was further explored by Azarderakhsh, Lang, Jao, and Koziel (2018), who
implemented the supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol on Edwards curves,
achieving improved resistance to side-channel attacks through complete curves and unified addition formulas.
Moreover, Kim, Yoon, Park, and Hong (2019) demonstrated the advantages of Edwards curves in isogeny
computations by employing degree-invariant odd-degree isogenies, particularly in recovering image curve
coefficients. Meanwhile, Hu, Gnatyuk, Kovtun, and Seilova (2019) proposed an efficient and secure method
for analyzing birationally equivalent Edwards curves over finite fields, contributing to optimized digital
signature schemes. Furthermore, Fournaris, Dimopoulos, Moschos, and Koufopavlou (2019) introduced an
organized framework for scalar multiplication and elliptic curve digital signature algorithms based on twisted
Edwards curves, highlighting their completeness, uniform execution behavior, and resistance to side-channel
attacks. Collectively, these studies underscore the significant role of Edwards and twisted Edwards curves in
modern public-key cryptographic systems. Motivated by these findings, the present work explores the
application of multiple Ancient Indian Vedic Mathematics (AIVM) techniques to Edwards and twisted

Edwards curves to enhance the performance of ECC-based cryptosystems.
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2. Literature Review

Elliptic Curve Cryptography (ECC) ka aaghaz Miller (1986) aur Koblitz (1987) ke kaam se hua, jisme
elliptic curves ko public key cryptosystems ke liye ek efficient aur secure framework ke roop me prastut kiya
gaya; baad me Edwards (2007) ne elliptic curves ka ek naya normal form introduce kiya jisme point addition
aur doubling ke liye saral aur fast formulas uplabdh hue, jise Bernstein aur Lange (2007) aur Bernstein et al.
(2008) ne aage badhate hue Twisted Edwards curves ke roop me generalize kiya, jo zyada elliptic curves ko
cover karti hain aur cryptographic implementations me behtar performance deti hain. Iske baad kai researchers
ne in curves ke mathematical aur structural aspects par kaam kiya, jaise Ashraf aur Kirlar (2012) ka alternate
models ka study, Moody (2010) ke mean value formulas, aur Bessalova aur Tsygankova (2017) ka minimal
even cofactor par analysis, jo security parameters ke liye mahatvapurn hai. Implementation efficiency badhane
ke liye Bianco aur Gorla (2016) ne point compression, Yu et al. (2016) ne deterministic encoding, aur Shirase
(2016) ne optimized coordinate systems propose kiye, jabki practical security ke liye Dugardin et al. (2017)
aur Fournaris et al. (2019) ne fault aur side-channel attack resistant Edwards curve architectures par kaam
kiya. Recent research me Edwards curves ka role post-quantum cryptography me bhi ubhar kar aaya, jahan
Azarderakhsh et al. (2018) ne EASIDH scheme ke madhyam se supersingular isogeny Diffie—Hellman ko
Edwards curves par implement kiya aur Kim et al. (2015, 2019) ne isogeny computation ke optimized methods
develop kiye, saath hi Hu et al. (2019) ne binary fields me birationally equivalent Edwards curves search karne
ke techniques di; 2020 se 2025 tak ke studies me hardware acceleration, lightweight aur IoT applications,
secure parameter selection, aur quantum-resistant cryptographic schemes par focus raha, jisse yeh spasht hota
hai ki Edwards aur Twisted Edwards curves aaj bhi modern cryptography ka ek mahatvapurn aur sakriya

research area bani hui hain.
3. Fundamentals of Dvandva-Yoga and Urdhva-Tiryagbhyam Techniques

This section introduces selected Ancient Indian Vedic Mathematics (AIVM) techniques, namely the
Dvandva-yoga and Urdhva-Tiryagbhyam methods. These approaches are subsequently employed to improve
the computational efficiency of the proposed ECC-based cryptosystem.

3.1. Urdhva Tiryagbhyam [14]

The general multiplication technique known as the Urdhva-Tiryagbhyam method can be applied to a wide
range of arithmetic operations. The terms Urdhva and Tiryagbhyam respectively mean “vertically” and
“crosswise.” This multiplication approach is based on an Ancient Indian Vedic Mathematics (AIVM)
algorithm that performs calculations simultaneously in vertical and crosswise directions. The Urdhva-
Tiryagbhyam method enables efficient and parallel computation, making it well-suited for high-speed
arithmetic operations. The following section presents illustrative models and step-by-step procedures

demonstrating the application of the Urdhva-Tiryagbhyam technique.
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Figure 1: Urdhva-tiryagbhyam Technique for three digits

Multiply 32 by 24 i.e. 32 x 24
1. 2x4=8

3 2
l A\/\‘l 2. (3x4)+(2x2)
2 4 12+4=16=06
6 8 3.3x2=6
3x2=6
26+1==7

Figure 2: Urdhva-tiryagbhyam Technique for two digits

3.2. Dvandva-Yoga Sutra
The Dvandva-yoga sutra is a principle from Vedic Mathematics that provides an efficient method for
performing squaring operations, especially for binary and digital numbers. The term Dvandva means pair or
duality, and yoga means combination or addition. Together, the sutra focuses on computing the square of a
number by systematically combining pairs of digits and summing their products.
Explanation:
In the Dvandva-yoga method, the square of a number is calculated by:

1. Squaring each digit.

2. Adding twice the product of every possible pair of digits.

3. Arranging these partial results according to their positional weights.

4. Combining the results to obtain the final square efficiently.
This approach reduces the number of intermediate steps compared to conventional squaring methods, making
it faster and more hardware-efficient.
Importance in ECC: In elliptic curve cryptography (ECC), squaring operations are frequently used in point

addition and point doubling algorithms. By applying the Dvandva-yoga sutra, squaring operations can be
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executed with lower computational complexity, reduced processing time, and decreased power consumption.
This makes the sutra particularly valuable for high-performance and low-power cryptographic

implementations.

523
I I 11 |\
523 = 53 52x2 4x12 23
125 50 20 8
+100 +40
= 125 / 150 60 8
=125/150/60/8
K/
=125/150+6/0/8
=125+15/6/0/8
=140/6/01/8
=140608
=140608

Figure 3: Dvandva-yoga Technique for two digits
4. Edwards Elliptic Curves (EEC)

The mathematical foundation of Edwards' elliptic curves, that is, regular and twisted Edwards elliptic curves,
will be discussed in this section.
4.1. OEEC (Ordinary Edwards Elliptic Curve)

A typical elliptic curve for Edwards Eq across a field F in one boundary d is described as
X+ =1+dx*y’ (1)
where d € F—{0,1} and char(F)#2.
In a set-builder form, the curve (3.1.1) can be composed as
Ed:{(x,y):x2+y2=1+dx2y2} (2)
Another summarized form of an Edwards elliptic curve with two boundaries, ¢ and d, is described as
4yt =c (1+dx’y?) (3)
In set-builder form, the curve (3.1.3) can be written as
E , = { (x,y): x4y’ =cz(1+dx2y2) and cd(l—c4d)¢0} 4)
Edwards Elliptic Curve Set Addition Law Eq
Let P = (x1, y1), Q = (x2, y2), and R = (x3, y3). Then, R =P + Q, then R is provided by

o BXatnn) (5)
(1+d xlsz’lyz)
_ (J’1 Yo =X xz) (6)
. (l—dxlxzyﬂz)
. (xl N t+x yz) (7)
(x Xy 0 J’2)
s = (xl 1= X yz) (8)
(xl V2= xz)’l)
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4.2. TEEC (Twisted Edwards Elliptic Curve)

An Edwards curve that is twisted Tag is an Edwards curve's location. Eq, and is distinguished by the
configuration of focuses (x,y) satisfying the requirement
ax’+y’ =1+dx’y’ 9)
4.2.1. Addition of P and Q on Tad
Let P = (x1, y1), Q= (x2, y2), and R = (x3, y3). Then, R =P + Q, then R is provided by

i.e. R=P+Q
where X3 :M (10)
(1+dX1X2J’1)’2)
and _m-anxn) (11)

o (1 —d XX, 0¥, )
Remark-.1: If we put

dz(xlz—xf)—(xlzy%—yfxg) ind az(xlzyf—xfﬁyzz) -3 (=)
x5 (37 -3) 3753 (o - ¥3)

They then decrease to the corresponding d-autonomous structure in the aforementioned formulas.

PG ERE-2 ) (12)
(“xl X, + ) )’2)

o xn) (13)
(xl Y2 _x2y1)

5. COORDINATES SYSTEM FOR EEC [17]

The homogeneous projective for EEC is employed in cryptography to prevent the Edwards extension formulas
from being inverted. Each unique elliptic curve point P with affine coordinates (x, y) is mapped to a point P'
with projective coordinates (X, Y, Z) using the following adjustments in the projective direction framework,

a three-dimensional coordinate system:
(x, y) - (—, —j (14)
E, and T, , curves in the projective directions framework, separately, can be addressed as follows, utilizing
the change (2.4) above.
(X2+Y2)22 =Z*+d X772 (15)
(ax?+¥?)2? =2 +d x*7 (16)
6. Proposed Schemes

We will discuss some efficient cryptographic schemes in this section that use projective homogeneous
directions and AIVM techniques to add and multiply Edwards elliptic curves, specifically the normal OEEC
and TEEC.
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Addition of P and Q on OEEC: Algorithm 1

With the help of the above equations, we get,
P(XDK’ZI)J'_Q(XZDYz;ZZ) :R(X?,’Y:;’Z})

where Xy =2,2,(Z 73 —d X, X, 00 ) (X,Y, + X, )
=22, (212222 _dX1X2Yle)(Y1Y2 _Xle)
and 2, =(223 -d X, 0,0, (2023 +d X, X,0Y, ).

Using AIVM techniques, the related algorithm is now explained as follows:

Input : PE(XPYI’Zl), QE(XZ’YZ’Z2)and d
Output: R=P+0=(X;,Y;,Z;)
1 A=Z,-Z,
2 | B=X,-5
3 c=X,7Y
| 4 D=Y-Y, i
5 EzXfin ]
= F=d-D-E
7/ G=B+C
F=n H=A>-F
[ 9] I=A*+F
10 | J=D-E
i X,=A4-G-H
B | nm=aag
13 Zy;=H-1
14 X?:Xé?l
S N BT
|16 Return(X,:Y,: Z;) T

where 47 is processed utilizing the AIVM Urdhva-tiryagbhyam strategy and 4, B, C, D, E, F is figured

utilizing the Dvandva-yoga procedure.
Doubling P on OEEC: Algorithm 2
With the help of the above equations, we get,
P(X\,Y,Z)+P(X,,Y,,Z)) = R(X;5,Y5,2Z3)

where Xy =2x,1,27 (7 -d X]%7)
=22 (322 4 d 10

and Z,=(z+d X702 ) (2 —d X777

Using AIVM techniques, the appropriate algorithm is now explained as follows.
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Input: P=(X,Y,Z),‘d

Output: R=P+P=2P=(X,,Y;,Z;)
A=X"

2 B=w

g C=22

4 D=d-A-B

5 E=2.X,-Y,

6 F=C?>-D

7 G=C?+D

8 H=B—-A

9 X,=E-C-F

10 Y,=C-G-H

11 Y,=F-G-F

12 X;=F-G-H

1] Zy=F-G-H

12 Return (X5,Ys,Z5)

Where D, E is computed us;ﬂé the AIVM Urdhva-tiryagbhyam approach and ¢?, x?,v,*,z? is computed using the
Dvandva-yoga technique.
Addition of P & Q on TEEC: Algorithm 3
With the help of the above equations, we get,
P(X), 1, 2)+Q(X,.Y,,2;) = R(X;,15,Z3)

where X, = (X% - 60) (X K23 - X, 1,27

Y, =(hY—a X, X, ) (X523 - X177 |
And Zy =27, (XY, - X,1) (Y)Y, —a X, X,) .

The matching method that makes use of AIVM techniques is now explained as follows.

Input:P=(X,,Y,,Z,),0=(X,,1,,2,), 4
Quiput: R=P+0=(X,¥.Z;)
1 A=X,Y,

2 B=X, Y,
3 - Jec=x1,

4 D=X,.Y,

5 E=Y,-Y,

6 F= %%

7 G=2-2,

8 Yz

9 I=2Z7

10‘ J=C-D

11 | K=E+a-F

12 | L=A-T

13| M=B-H

14 X;=J-(L+M)
15 Y; =K-(L-M)
16 Z,=J-K-G
17| X;=J-(L+M)
17 Z,=J-K-G
17 Return(X,,Y,,Z;)

Above all calculation can be calculated by the Vedic Formulae
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Doubling of P on TEEC: Algorithm 4
With the help of the above equations, we get,
P(Xla}llnzl)—‘rP(X]aYi)Z]) :R(X}}))gaz?))

where X, =2XY, (a X2 +v? 72212)
Y =(aX?+ % )(aX? - %)
and Zy=(aX] + 77 )(a X7+ % =227 )

Using AIVM techniques, the related algorithm is now explained as follows:

Input: P=(X,Y,,Z,) and ‘@’
Output: R=2P=(X,,Y,,Z;)

1 A=X,

2 B=Y,

3 | c=2}

4 i D=qa-A*

5  E=D+B?

6 | F=E-2.C
7 G=D-B?

8 X,=2-A-B-F

9 Y,=E-G

10 | Z,=E-F

11 X,=2-A-B-F
10 | Y;=E-G

11 Return (X3,Y3,Z5) ‘

Where D, E, F, 2ABF is computed using the UTT technique and 42, B*, z? is computed using the DTT.

7. Result Analysis and Comparison

Tables 6.1 and 6.2 provide a close look at the number of math tasks, such as duplication, squares, three-
dimensional forms, and other higher powers that are used to add two specific or comparative focuses in OEEC
and TEEC using both classic strategy and AIVM methods.
Table 1 shows how many operations are required for point addition on OEEC and TEEC.
Curves Conventional Method for Point Addition AIVM techniques for Point Addition

R AR B S B B B B S
TEEC 23 4 0 0 27 14 2 0 0 16
OEEC 31 8 0 0 39 12 1 0 0 13

Table 2. The number of steps required in OEEC and TEEC to double a point is compared

Curves Conventional method for Point Doubling AIVM techniques for Point Doubling

R B PA S R B B B S
TEEC 12 12 0 0 24 7 3 0 0 10
OEEC 14 2 0 4 20 9 4 0 0 13
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Table 1 shows that the percentage of jobs involved in point expansion using AIVM techniques decreased to
around 40% and 66% for OEEC and TEEC, respectively. Table 2 illustrates that the number of juggling
activities used, specifically when multiplication employing AIVM procedures for OEEC and TEEC, is 35%
and 58% less than that of standard techniques, respectively. Tables 3 and 4 show the maintenance and time
savings for center extension and point duplication in the OEEC and TEEC, using 8-piece and 16-cycle
processors independently. AIVM techniques reduce handling time for focus expansion by 89.53% in OECC
and 88.1433% in TEEC for 8-bit processors. Point multiplication reduces handling time, reserves funds by
86.5324% in TEEC and 86.5656% in OEEC. AIVM techniques reduce handling time savings for focus
expansion by 92.2065% in OECC and 92.1158% in TEEC for 16-bit processors, and point multiplying reduces

handling time reserve funds by 91.3922% in E, curve and 91.4011% in T, , curve.

Table 3. Processing times for mathematical operations in EEC and TEEC based on an 8-bit CPU using
traditional and AIVM methods

Points Addition Point Doubling
A
(In seconds) Seconds) (In %) (In seconds) (In Seconds) (In %)
OEEC 0.0100961 0.00101582 89.93934 0.00802286 0.0010788 86.56307
TEEC 0.0093021 0.00110263 88.14625 0.00756117 0.00102579 86.43471

Table 4: Shows the processing times for arithmetic operations in EEC and TEEC based on a 16-bit CPU using
both traditional and AIVM approaches.

Points Addition Point Doubling
Curves T, EACC T, \j}]CC T, SA T, EDCC T, vDEcc TsD

(In seconds) (In Seconds) (In %) (In seconds) (In Seconds) (In %)
OEEC 0.0105821 0.000824673 92.20687 | 0.00797328 0.000685790 91.39881
TEEC 0.00933162 0.000735544 92.11784 | 0.00787529 0.000677214 91.40071

Different types of arithmetic assignments expected in OEEC and TEEC for focus expansion and point
multiplying separately are shown in Figures 1 and 2. The fig.1 and 2 make it evident that solid form activities
for focus expansion and point multiplication in the two Edwards elliptic curves are not used in AIVM methods,

demonstrating the value of AIVM strategies in accelerating the speed of ECC-based cryptosystems.

f
45 )
40 32
35
31
30 27
g 25 23 |
£ \
g 20 16
S
s 15 | n 13
g s
Eow H
E ) : . -
° 0 0 0 0
g 0 Iﬂ = [
E P1 P2 P4 P5 Pl P2 P4 S
s
; Using conventional method (Point addition) Using AIVM techniques (Point addition)
°
=

OEEC BTEEC

J

-

Fig.1. Comparison of different types of arithmetic operations required for point addition in OEEC and TEEC
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Figure 2: A comparison of the various arithmetic operations needed for point doubling in TEEC and OEEC

8. Conclusion

This paper presented a comprehensive performance analysis of Edwards elliptic curves using Vedic
mathematics to enhance secure authentication protocols in elliptic curve cryptography (ECC). By integrating
Vedic mathematical techniques into core ECC operations, efficient implementations of point addition and
point doubling algorithms were developed. The Urdhva-Tiryagbhyam sutra was employed to optimize
multiplication operations, while the Dvandva-yoga method was utilized to accelerate squaring computations,
both of which are critical to elliptic curve arithmetic. Experimental results obtained through MATLAB
simulations using 16-bit and 32-bit operands demonstrate that the proposed Vedic mathematics—based
approach significantly outperforms conventional arithmetic methods. Improvements were observed in
execution speed, processing time, and power efficiency of multipliers, highlighting the suitability of the
proposed techniques for resource-constrained cryptographic environments. The comparative analysis,
supported by detailed tables and graphical representations, confirms that Vedic arithmetic effectively reduces
computational complexity without compromising cryptographic security. Overall, the findings establish that
incorporating Vedic mathematics into Edwards elliptic curve operations offers a promising pathway for
developing high-performance and energy-efficient ECC-based authentication protocols. The proposed
approach can be effectively extended to hardware implementations and advanced elliptic curve models,

making it a valuable contribution to secure and efficient cryptographic system design.
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